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1 Project Objective 
 
The objectives of the Express project at MIT have been to: 

• close the feedback loop on software construction; 
• produce tools for constructing highly adaptive software; 
• make advanced, functional programming languages useful, and make practical 

tools for embedded software development, including serious systems 
programming; 

• harness advanced reasoning tools to serve the above goals, with application of 
such reasoning during development and at runtime. 

 
Closing the feedback loop requires monitoring and diagnosing software at runtime.  It 
also requires software with adaptive capabilities.  Making functional languages effective 
for embedded systems and systems software requires language improvements, type 
checking and compilation improvements, and aggressive, yet safe, optimization 
techniques.  The first three goals all involve significant additional reasoning at 
development and runtime, to support more sophisticated program, language and 
application implementation techniques. 
 
2 Overview 
 
A typical modern-day software application is an enormous, monolithic system; and 
maintaining and evolving it is a Herculean task requiring large teams of engineers. 
Software systems change perhaps once or twice a year, involving a painful upgrade on 
the user’s part—a process that can require hours of time and the interaction of a skilled 
technician. 

This state of affairs will not support the demands of mission-critical field systems that 
operate in a changing, hostile environment. These software applications should not be 
rigid constructions that “shatter” when confronted with change; they must be flexible 
constructs that fluidly adapt to circumstance. 

Military field applications of the future will be massively distributed systems, operating 
in an evolving environment; they will include modules that do not always function as 
desired. The presence of such failure modes will be unavoidable due to hardware failures, 
software bugs, and changes in the external environment. But mission-critical software 
systems must continue to operate effectively even in such changing circumstances. 

The path to adaptability is through feedback: software that can reason about the high-
level goals of the application, monitor its fitness, diagnose problems, and reconstruct the 
application given a particular diagnosis. Such a system should be aware of alternative 
approaches to achieving its goals, including alternative implementations of similar 
functionality, and debugging techniques for recovering from exceptions in its current 
behavior. In these cases, it should automatically and dynamically reconfigure the system 
and employ these alternative approaches to realizing its goals. 
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Embedded software should be developed against the backdrop of  frameworks, each 
tailored to a single (or a small set of) issues. Some frameworks deal with cross-cutting 
issues such as fault tolerance; others deal with particular components and functional 
layers of a complex system (e.g. control of a sensor asset). 

A framework, as we use the term, includes:  

1. A set of properties with which the framework is concerned,  

2. a formal ontology of the domain,  

3. an axiomatization of the core domain theory,  

4. analytic (and/or proof) techniques tailored to these properties and their domain 
theory,  

5. a runtime infrastructure providing a rich set of layered services,  

6. models describing the goal-directed structure of these software services,  

7. a protocol specifying the rules by which other software interacts with the 
infrastucture provided by the framework,  

8. and an embedded language for describing how a specific application couples into 
the framework. 

A framework thus reifies a model in code, API, and in the constraints and guarantees the 
model provides. Frameworks should be developed with a principled relation to the 
underlying model, and preferably generated from a specification of the model. The 
specification of the model should be expressed in terms of an embedded language that 
captures the terms and concepts used by application domain experts. 

The ontology of each framework constitutes a component of a semantically rich meta-
language in which to state annotations of the program (e.g. goals, alternative strategies 
and methods for achieving goals, subgoal structure, state-variables, declarations, 
assertions, and requirements).  Such annotations inform program analysis. They also 
facilitate the writing of high level generators that produce wrapper code integrating the 
multiple functional frameworks.  

System development involves a new player, the framework developer, who plays the role 
of a bridge between application developers and systems programmers. Framework 
developers: 
• provide tools that are too domain (or issue) specific for general system programmers 

to attend to, but too much in the style of core system code for application 
programmers to attend to; 

• extend and raise the level of the language and infrastructure that the application 
programmer uses to solve problems;  

• provide tools that synthesize the necessary low-level reactive code from the high level 
embedded language of the framework. 

The core functionality of the system is decomposed along physical lines. Families of 
functionally similar components in a common domain (e.g. Optical Sensors) are managed 
by parameterized frameworks that cover that domain. Such a framework embodies the 
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domain architecture for this area of functionality. A domain architecture structures the 
procedural knowledge of the domain into layers of services, each capable of achieving 
specific goals; a service at one layer invokes services from the lower layers to achieve its 
subgoals. Each service has many implementations corresponding to the variability and 
parameterization of the domain.  Each alternative implementation represents an 
alternative strategy, method, or plan for achieving the goal. The choice of which 
implementation is to be invoked is made at runtime, in light of runtime conditions, with 
the goal of maximizing expected utility. Such frameworks are therefore Dynamic Domain 
Architectures. Each such framework exposes to other frameworks its models, goal 
structure, state-variables, its API, its protocol of use and constraints on those subsystems 
that interact with it. 

Conceptually, these frameworks interact at runtime by observing and reasoning about one 
another’s state and by posting goals and constraints to guide each other’s behaviors. The 
posting of goals and constraints and the observation of state is facilitated by wrapper code 
inserted into the code of each framework at generation time by model-based generators of 
the interacting frameworks. The use of generated observation and control points, as well 
as the use of novel, fast propositional reasoning techniques allow this to happen within 
reactive time frames. The composite system behaves as if it is goal directed while 
avoiding the overhead normally associated with generalized reasoning. 
The full application now consists of core functionality built by composing a variety of 
model-based frameworks as well as a variety of cross-cutting aspects, each written in the 
embedded language of a specific framework and each describing how that aspect is 
woven into the core functionality. 

The frameworks capturing Domain Architectures as well as those capturing various 
crosscutting aspects evolve and are maintained separately; they are bound into the final 
system as late as necessary. Software maintenance and evolution are decomposed along 
the lines of frameworks. 

A rich object-oriented language system, derived from the best ideas of Lisp and similar 
languages, can provide the base level platform for this new approach to embedded 
systems development. This core language system consists of a Virtual Machine, a Meta 
Object Protocol, a class system featuring multiple inheritance, multiple argument 
dispatch and method combination, a dynamic condition handling and recovery facility, 
and a powerful procedural macro system. These tools provide great power for expressing 
and synthesizing the code implementing model-based frameworks. 

This rich Dynamic Object Oriented Programming environment provides these rich 
services not just in the development cycle but also within the runtime environment. The 
availability of runtime dynamic redefinition, late binding, condition and exception 
handling, generalized diagnosis and recovery support make this the idea platform for 
supporting not just DDA frameworks but also for supporting the model-based reactive 
executives. 

2.1 Off Line Analysis 
Although our focus is on the two areas above, it is important to understand that this 
approach makes the static analysis of the system easier. At both the Framework and the 
Executive level, such a system is inherently adaptive, attempting to guide itself away 
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from anomalous states and back towards the intended behavior. This adaptivity makes the 
static analysis easier by reducing the possibility of the system taking excursions far away 
from the intended behavior. 

In addition, the composition methodology itself lends itself to analysis. Part of each 
framework is a protocol specifying the rules under which other components are supposed 
to interact with the infrastructure provided by the framework. Corresponding to this 
protocol is a proof that certain properties will hold as long as the protocol is adhered to. 
This proof is conducted off line once by the framework developers and delivered as part 
of the framework. The fact that the protocol is adhered to by other parts of the system is 
often guaranteed by simple inspection or checking methods. Thus, part of the analysis of 
the system is done once off line, and then repeatedly reused. 

Corresponding to each framework are analytic tools that can be used to examine the code 
that couples to this framework. Each such analytic framework can show that a set of 
properties in its area of concern is guaranteed to hold as long as the remaining code 
satisfies a set of constraints. Analysis of the system can proceed iteratively with each 
framework first showing that it satisfies the constraints placed on it by others and then 
determining what constraints it places on its sibling frameworks in order to guarantee its 
properties of interest. The analysis and understanding of the overall behavior of the 
system is, therefore, decomposed in just the same way as are the development, 
maintenance and evolutionary tasks. 

Each framework establishes its own natural proof techniques; therefore heterogeneous 
reasoning capabilities are needed to support the analysis of software decomposed into 
frameworks. 

 
3 Approach 
 
Our approach has six basic technology components: 
 
1. A general framework for constructing adaptive systems, the DynamicDomain 

Architecture. 
 
2. A general, extensible notation that allows the programmer to annotate software with 

extra information: pragmatics, requirements, invariants, metrics. 
 
3. A reasoning system for monitoring and diagnosis. 
 
4. Abstraction tools for constructing software components in advanced programming 

languages. 
 
5. A major thrust of the Express project was exploring the use of functional 

programming languages, such as Scheme or SML, for systems programming. This 
began with Scsh, a Unix systems-programming environment embedded within the 
Scheme programming language [Shi94]. 

 

 4



  

6. A proof-based language that is formally well grounded but as natural to use as 
modern programming languages. 

 
We are developing frameworks for more expressive programming---allowing the 
programmer to write down facts about his program in a notation that is amenable to 
machine processing. Moving this information out of the comments and into the program 
gives software tools access to the information, for debugging, optimization, static 
checking, and flexible reconfiguration of large software systems.  There are two key 
challenges we must address here: 

 
1. How to provide these features in an extensible framework that can be adapted to the 

particular demands of a given task domain. 

 
2. The design of a notation for expressing support for propositions that can be mastered 

and used successfully by practicing software engineers, rather than by professional 
logicians. 

 
 
Our approach to building adaptive software is based on the notion of a Dynamic Domain 
Architecture (DDA). Dynamic Domain Architectures structure an application domain 
into layers of common services where each service has a number of variant 
implementations tailored to different environmental conditions. The architectural level of 
description also provides “purpose links” which explain how the components of a service 
achieve its overall goals. The DDA development environment synthesizes run-time 
sentinels to monitor the preconditions of the purpose links. The runtime services of the 
DDA are invoked when a sentinel signals the failure to achieve an expected condition; 
the runtime services are responsible for diagnosis of the failure and for selection and 
execution of a repair procedure. Since the DDA provides many alternative 
implementations of each component, a typical repair involves rolling back to a recovery 
point and invoking an alternative implementation. 

We are generally exploring program analyses to allow powerful, expressive programming 
features to be used efficiently to construct real systems programs. Our approach exploits 
the solid formal underpinnings provided by advanced functional languages, as well as the 
analytic power provided by proof annotation. 

3.1 Milestones 
 

3.1.1 DDA Milestones 
 

Task 1.0  Develop and extend Scsh, a Unix systems-
programming environment embedded within the 
Scheme programming language.  Use of functional 
programming languages, such as Scheme or SML, 
for systems programming. 
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Task 2.0  Develop technology for transducer networks that do 
not have a simple linear “pipeline” data-flow 
topology. 

Task 3.0  Design and Development of a programming 
language for DDA. In this task we will use the 
lessons learned from our earlier experiences to 
design and develop a Dynamic Object Oriented 
Programming language in the Lisp tradition which 
is tailored to the new programming paradigm 
developed in the earlier work. 

Task 4.0  Application Demonstration.  In this task we will 
conduct a modest demonstration of the new 
language system by picking a prototype application 
and implementing it in the new system. 

 

3.1.2 Off Line Analysis Milestones 
 

Task 1.0  Develop a proof based language that is formally 
well grounded but as natural to use as modern 
programming languages. 

 
 

3.1.3 DOLL Subcontract Milestones 
 

Task 1.0 Build additional agents 

Task 1.1 Test extended system on images 

Task 1.2 Report on the results of self-adaptation to 
robustness and stability of visual interpretation. 

Task 2.0 Design the hooks and tools required for 
debugging and monitoring of self-adaptive 
programs based on the developed architecture. 

Task 2.1 Implement the hooks and tools designed in task 
2.0 

Task 2.2 Document and report on the self-adaptive 
program design, development, debugging and 
monitoring paradigm developed under this 
program. 

Task 3.0 Produce a plan for a generalization of the self-
adaptive agent architecture by looking at 
applying the architecture to a very different 
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problem domain.  Ideally this will be done in 
collaboration with a partner that we will attempt 
to identify as a consumer of this technology. 

Task 3.1 Implement and document the generalization of 
the architecture designed in Task 3.0. 

 
 
3.2 Outline 
 
Although the motivation for this project is a comprehensive embedded systems 
development environment, the investigation of individual component technologies was 
generally conducted in individual environments.  The remainder of this report documents 
the individual subprojects and milestones of the Express / DDA project.  
 
4 Dynamic Domain Architectures 
 
A Dynamic Domain Architecture structures a domain into service layers; each service is 
annotated with specifications and descriptions of how it is implemented in terms of 
services from lower levels. Like other domain architectures, a Dynamic Domain 
Architecture provides multiple instantiations of each service, with each instantiation 
optimized for different purposes. Thus, it serves as a well structured software repository. 
Typically, the application is a relatively small body of code utilizing the much larger 
volume of code provided by the framework. Typical domains of concern for military 
embedded software systems include sensor management, navigation guidance and 
control, electronic warfare, etc. 
 
A Dynamic Domain Architecture is, however, different from the domain architectures 
developed in earlier DARPA programs (e.g. STARS and DSSA). In earlier systems, the 
Domain Architecture was a static repository from which specific instantiations of the 
services were selected and built into the run-time image of the application. Neither the 
models nor the deductions used to select specific instantiations of the services are carried 
into the runtime environment. In a Dynamic Domain Architecture, however, all the 
alternative instantiations, plus the models and annotations describing them are present in 
the run-time environment, and multiple applications may simultaneously and dynamically 
invoke the services. 

Dynamic Domain Architectures allow late binding of the decision of which alternative 
instantiation of a service to employ. Like Dynamic Object Oriented Programming 
(DOOP) systems, the decision may be made as late as method-invocation time. However, 
Dynamic Domain Architectures go further than DOOP, allowing the decision to be made 
using much more information than simple type signatures. The models which describe 
software components are used to support runtime deductions leading to the selection of 
an appropriate method for achieving a service. 

Dynamic Domain Architectures recognize that in many open environments (e.g., image 
processing for ATR) it isn’t possible to select the correct operator with precision, a 
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priori. Therefore, Dynamic Domain Architectures support an even later binding of 
operator selection, allowing this initial selection to be revised in light of the actual effect 
of the invocation. If the method chosen doesn’t do the job well enough, alternative 
selections are explored until a satisfactory solution is found or until there is no longer any 
value to be gained in finding a solution. 

Dynamic Domain Architectures remove exception handling from the purview of the 
programmer, instead treating the management of exceptional conditions as a special 
service provided by the run-time environment. The annotations carried forward to run 
time include formal statements of conditions which should be true at various points of the 
program if it is to achieve its goals. The DDA framework generates runtime monitoring 
software that invokes error-handling services if these conditions fail to be true. The 
exception-management service is informed by the Dynamic Domain Architecture’s 
models of the executing software system and by a catalog of breakdown conditions and 
their repairs; using these it diagnoses the breakdown, determines an appropriate scope of 
repair and possibly selects an alternative to that invoked already; it then restarts the 
computation. 

Finally, a DDA framework provides an embedded language in which the developers of 
other frameworks can access its state-variables and influence its goal and plan structure. 

4.1 Domain modeling 
The idea of domain architecture dates back to the Arpa Megaprogramming initiative 
where it was observed that software reuse could best take place within the context of a 
Domain Specific Software Architecture. Such an architecture would identify important 
pieces of functionality employed by all applications within the domain, and would then 
recursively identify the important functionality supporting these computations. In a 
visual-interpretation domain, for example, typical common functionality might include 
region identification, which in turn depends on edge detection, which in turn depends on 
filtering operations (eg, convolutions). 

This process of identifying and structuring the common functionality is the first 
component of a process termed Domain Analysis. Domain Analysis structures common 
functionality into a series of “service layers,” each relying on the ones below for parts of 
its functionality. The second component of Domain Analysis is the identification of 
variability within the commonality. Returning to our visual-interpretation example, there 
are several different approaches to region identification, dozens of distinct edge-detection 
algorithms, and many different ways to perform filtering operations. When looked at in 
even finer detail, there may be an even greater number of variant instantiations of any of 
these operations. Variations arise due to different needs for precision, time and space 
bounds, error management, and the like. 

The power of Domain Analysis is that its identification of common functionality lets one 
view the code in new terms: the bulk of the code is in the service-layer substrate and 
implements functionality common to many applications. Each application consists of a 
thin veneer of application-specific code, riding on top of this substrate of service layers. 
However, the substrate contains many variant instantiations of each service. Although 
each instantiation is relevant to only some of the applications, Domain Analysis lets us 
see these as variants of a common conceptual service. Before the Domain Analysis was 
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performed, each application stood alone using its particular instantiations of the common 
services and was ignorant of the fact that other applications used the same conceptual 
services but with different instantiations. 

4.2 Dynamic Object Oriented Programming 
 
The Lisp community, with its close connection to artificial intelligence research, has 
independently discovered some of the same ideas, but has packaged them in a more 
dynamic but less formal framework. This approach was first identified and termed 
“super-routines” in a paper by Erik Sandewall [San79, SSS81]. Sandewall noted that it is 
often the case that a whole class of computations, are instances of some very general 
pattern of computation, where the members of the class differ only in the details. He 
termed this higher-level structure a “super-routine” and noted that data-driven 
programming techniques could dynamically determine which subroutine was relevant at 
run time. 

As object-oriented programming ideas developed in the Lisp and Smalltalk communities, 
several researchers began to understand that the Dynamic OOP facilities common in 
these languages were exactly what is needed to build a super-routine. 

The high-level common services of a Domain Architecture are precisely the same idea as 
Sandewall’s notion of a super-routine (rediscovered in another context by another 
community a decade later). Unlike the Static Domain Architectures, the runtime 
environment of the systems Sandewall characterized all included many variant 
instantiations of the common services, and dynamically invoked a particular instantiation 
based on run-time conditions. 

The mapping between the super-routine (or Domain Architecture) idea and the features of 
DOOP is straightforward: each high-level abstract operation (or Domain Architecture 
service) is identified with a generic function; the different instantiations are provided by 
different methods, each with a unique type signature. Method invocation performs the 
dynamic run-time selection of the appropriate instantiation of the service. This style of 
building extensible, domain specific architectures has become known as “open 
implementation” [Kic96]. 

Dynamic OOP also provides significant facilities for managing exceptional conditions. In 
the case of Lisp, these facilities were motivated by the needs of adaptive planning 
systems. In particular, the facilities provided to signal exceptional conditions allow the 
error-handling code access to the environment of the exception and this, in turn, allows 
the handler to characterize the nature of the breakdown. Facilities similar to the signaling 
of the exception are used to transfer control from the error handler to an appropriate 
“restart” handler. Once the error handler has characterized the nature of the breakdown, it 
invokes a repair mechanism, not by name, but by description. 

Finally, the language provides facilities to specify what cleanup work must be done to 
perform the appropriate recovery work as rollback to the restart position takes place. We 
enrich this infrastructure with extensive models of the software’s structure, function and 
purpose and to build in facilities for noticing if an operator has failed to achieve its 
purpose. Then we must carry into the run-time environment all the descriptive 
information as well as all the variant instantiations of operators present in the 
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development environment, and we use this information reactively to control the physical 
system in which the software is embedded. We call this type of framework a Dynamic 
Domain Architecture because it incorporates and extends ideas from the two traditions of 
Domain Architectures and Dynamic Object Oriented Programming. 

4.3 Services Provided 
 

A Dynamic Domain Architecture is far more introspective and reflective than 
conventional software systems. This allows many tasks which currently burden the 
programmer to instead be synthesized from the models within a framework or to be 
provided as system services. 

Figure 1 shows a schematic of the monitoring, diagnosis and repair processes.  Failure to 
achieve a pre- or post-condition triggers the diagnostic service, which eventually results 
in a concrete repair plan, which we resource and then execute. 

 

Figure 1. Making the System Responsible for Achieving Its Goals 
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3. Diagnosis and isolation services which locate the cause of an exceptional 
condition, and characterize the form of the breakdown which has transpired. 

 alternative strategy. 

ht of the 
taining at that point. 

concern to the DDA framework. 

interacts. 

 

Instruments Code with Restarts and Unwind Protects 

4. Alternative selection services which determine how to achieve the goal of the 
failed computation using variant means (either by trying repairs or by trying 
alternative implementations, or both). 

5. Rollback and recovery services which establish a consistent state of the 
computation from which to attempt the

6. Allocation and re-optimization services which reallocate resources in lig
resources remaining after the breakdown and the priorities ob
These services may optimize the system in a new way in light of the new allocations 
and priorities. 

7. The synthesis of connections to reactive executives that manage physical 
components of 

8. The synthesis of connections to other DDA frameworks with whose state-
variables, goals and plans the current framework 
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Development Environment Runtime Environment 

Captures Super-routine layers Error Signaling 

Captures Plan Structures Diagnostic Service 

Instruments Code with Condition Signalers & Handlers  llback Recovery and Ro

Instruments Code with Restarts and Unwind Protects on Resource Reallocati

Identifies needs for extra resources and/or redundancy Restarting Computation 

 
Table 1.  Development and Runtime Se

 
rvic

.4 Key Components 

e identified the key components of a Dynamic domain architecture and studied how the 
lemented several components of the overall vision: We have 

reated a prototype interactive development environment which facilitates the capture of 

rated 

t just 
e 

 machine” (DVM).  The DVM is a very general engine capable 

namic language capabilities, 

es of the DDA 

 

 

4
 
W
pieces interact. We have imp
c
both code and annotations. In particular, we have a natural way of capturing “purpose” 
annotations which explain how one component of the system relies on another. Purpose 
annotations are the raw material from which runtime monitors will be synthesized. We 
implemented a model-based troubleshooter component for our Dynamic Domain 
Architecture system.  The troubleshooter is driven by a “plan description” of the system, 
an abstract description including decomposition, data and control flow links and 
constraints on the components’ behaviors.  In the current version we have concent
on quality of service descriptions, such as expected delay times.  The troubleshooter uses 
a novel multi-layered Bayesian representation that allows it to make inferences no
about the failure modes of the computation, but also about the likelihood of failures in th
underlying infrastructure. 

We have designed and implemented a transactional memory system as part of a byte code 
emulator for a dynamic language (common lisp). We have designed and implemented a 
“dynamic language virtual
of supporting many languages (Java, Common Lisp, Dylan ); it includes a complete 
meta-level along the lines of the CLOS MOP (Meta Object Protocol). 

5 Dynamic Language Extension Efforts 
 

In this section we provide detail on subprojects to extend dy
to better serve the goals of the DDA.  

 
5.1  Macros for Java 
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The ability to extend a programming language with new constructs is a valuable tool. 
ith it, system designers can grow a language towards their problem domain, enhance 

age 
 

e. 

OPSLA’01) in Tampa 
t 

ate Dispatching for Dylan 

her method dispatch 
ch iques through the utilization of arbitrary predicates to control method applicability 

neralizes 

 a 
hes 

 
nto 

ching for CLOS 

System (CLOS), using 
e etaobject protocol facilities of CLOS [Uck01].  We then demonstrated the utility of 

.4 The Dynamic Virtual Machine 

application code with respect to values of 
m  of the free variables in the code.  Traditional partial evaluation is done at compile 

W
productivity and ease maintenance. We have developed an extension to the Java langu
that allows Java programmers to define new syntactic constructs. The design is based on
the Dylan macro system (e.g., rule-based pattern matching and hygiene), but exploits 
Java’s compilation model to offer a full procedural macro engine. In other words, syntax 
expanders may be implemented in, and so use all the facilities of, the full Java languag
The system is implemented and working as a Java preprocessor. 

A talk on the Java Syntactic Extender was delivered at the ACM conference on Object 
Oriented Programming Systems, Languages, and Applications (O
Bay Florida in October, 2001 [BP01].  This work was also presented at an invited talk a
BBN in February 2002.  

 
5.2  Efficient Predic
 
Predicate dispatch  [EKC98] provides a generalization of ot

nte
and logical implication between predicates to determine method overriding. It ge
previous object-oriented single and multimethod dispatch, ML-style pattern matching, 
predicate classes, and classifiers. An efficient predicate dispatch implementation 
technique [CC99] involves reducing general predicate dispatch into multidispatch using
canonicalization process, mapping multidispatch onto a sequence of single dispatc
through the construction of a decision DAG, and finally implementing single dispatch in 
terms of a binary search. Dylan provides a rich set of built-in types and a powerful 
multimethod dispatch mechanism that present several challenges to the predicate dispatch
mechanism and its implementation. We have developed a mapping of Dylan types o
predicate types, a dynamic x86 code generator, and several improvements to the general 
implementation strategy. 

 
5.3 Predicate Dispat
 
We have added predicate dispatching to the Common Lisp Object 

mth
this enhancement by using predicate dispatching to extend a computer algebra system.  
The predicate dispatching facilities allowed us to implement algebraic operations more 
concisely than we would have been able to in the original system. 

 
 
5
 
Partial evaluation is a technique to specialize 

eso
time, although there is a variant called “runtime partial evaluation” that defers some of 
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the specialization to runtime. Dynamic partial evaluation [Sul01] goes much further, 
deferring all partial evaluation analysis and specialization to runtime. 

The DVM has been extended with a Dynamic Partial Evaluator (DPE) which builds 
are 

 

 the 

VM.  

e 
 more 

5.4.1 GLOS 

 lieu of a full Dynamic Virtual Machine, we have some extensions to Scheme, 
 
ct 

tch 

e used in an experiment comparing implementations of the 
  

c, 

eneric Little Object System) has been 

.5 The GOO (née Proto) Programming Language 

 2000, a new language called Proto was invented.  Proto is a prototype-based prefix 
o 

 

 

optimized versions of a method while evaluating it.  The partially evaluated methods 
themselves just methods with a more specific type signature.  In our implementation, the 
new method is dynamically added to the system making it available for method dispatch 
in future runs.  Thus the system dynamically optimizes itself as a byproduct of execution.

In 2000, we completed a second version of the design and implementation of our 
“Dynamic Language virtual machine” (DVM). We have extended the DVM to use
extremely general object model of Predicate Types, as described in Section 5.2. 

We are implementing a translation from the Java programming language to the D
While Java is not especially well-suited for highly dynamic, adaptive software 
implementation, this implementation will give us a starting point for performanc
analysis.  Also, we will be able to start adding features to Java that tap some of the
dynamic aspects of the underlying DVM. 

 
 

 
In
collectively known as the Generic Little Object System (GLOS).  GLOS provides
inheritance, multiple dispatch, predicate types, and a simple yet powerful metaobje
protocol for method dispatch.  Using the dispatch protocol, we provide multiple dispa
and method combination. 

The features of GLOS wer
“Gang of Four” Design Patterns in C++ (as presented in the GOF book) and in GLOS.
Using the advanced features available in GLOS allowed for more concise, more dynami
and more “first class” implementations of many of the design patterns.  This project is 
documented in AI Lab Memo 2002-005 [Sul02]. 

The library of Scheme utilities known as GLOS (G
ported to the PLT implementation of Scheme, out of Rice and Northeastern Universities. 

 
 
5
 
In
syntaxed language that is meant to be simple, powerful and extensible.  It is designed t
provide both a research and teaching framework for pushing the limits of abstraction and
dynamism and efficient and reliable delivery all while maintaining an ultra simple design 
and implementation.  The implementation includes a just-in-time whole-program 
compilation including a dependency-tracking scheme that supports full interactive
redefinition of highly optimized code and objects.  Finally, the entire language is 
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documented in less than ten pages and the implementation weighs in at less than te
thousand lines of code. 

Core Proto is fully imple

n 

mented including a suite of libraries and an interpreter.  Proto is 

 match the fact that the language is no 

o 

ey 

 tuning the GOO runtime facilities and led to the development of 

 

s been implemented including a general 

n initial release of GOO was made on www.googoogaga.org

written almost entirely in itself, and is bootstrapped using a Proto-to-C compiler.  Proto 
was used to teach a graduate-level seminar in advanced object-oriented dynamic 
language design and implementation techniques. 

In 2001, the Proto language was renamed GOO to
longer prototype-based.  A large amount of time was spent in actual language design.  
The overriding goal is to design an ultra simple and elegant language that is amenable t
simple and effective optimizations while not sacrificing interactivity.  An extensible 
lightweight dynamic type system was designed in such a way as to conveniently conv
programmers’ intent while at the same time providing type information to the optimizers 
and warnings to developers.  A key innovation is an extensible parameterized dynamic 
type framework that smoothly integrates into multimethod dispatch by way of a 
unification mechanism. 

Much work was spent on
a new fast subtyping representation, called the Packed Vector Encoding, that is extremely 
fast to construct, is one page of code to implement, and which is competetive with the 
best algorithms on a wide range of real-world class hierarchies.  This work along with a
general overview of GOO research was presented at the Lightweight Languages 1 (LL1) 
conference at MIT in November 2001. 

The dynamic compiler infrastructure ha
dependency-tracking framework.  Interactive top-level interactions are implemented in 
terms of a dynamic compiler. We presented the general simple dynamic compilation 
architecture at the Harvard Computer Science department in February 2002. 

 
A  in April 2002. 
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Figure 3. GOO Architecture 

 

A key innovation is an extensible parameterized dynamic type system, developed with a 
master’s student named James Knight.  The focus of his work has been to add a 
parameterized type system to GOO that works with GOO’s multimethod dispatch, and is 
as dynamic and extensible as possible.  This research is based on the substantial amount 
of prior work in this area, but improves on what has already been done in its flexibility 
and usefulness.  The goal was to create an extension of the type system that would 
enhance its expressiveness beyond that of the usual parameterization systems found in 
C++, ML, and Dylan by allowing the user to express covariant and contravariant 
relationships, when they exist.  
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Figure 4. Example Abstract Syntax Tree in GOO 
 

A new mechanism for implementing multimethod dispatch has been implemented on top 
of GOO’s dynamic compilation infrastructure.  The basic strategy is to translate generic 
function dispatch into a decision tree composed of subtype tests.  Method bodies can be 
inlined into the tree and the tree itself can be inlined into call sites.  These trees can then 
be pruned given available type information. 

A threading facility has been added to GOO and GOO’s runtime has been augmented to 
be mostly thread safe.  The thread library is a lightweight layer over the portable Posix-
standard pthreads API. 

Much effort has been put into fostering a user community and open source development 
effort around GOO.  GOO’s documentation has been made available in HTML format, a 
bug database was installed, a WIKI has been created and developed, and a majordomo 
mail list has been created and archived.   

 
 
 
5.6 Dynamic Optimization of Interpreters 
 
With additional funding via a joint MIT and Hewlett-Packard alliance, we have been 
investigating the application of dynamic native optimization to the domain of interpreters 
for dynamic languages.  Traditional JIT’s (“just in time” compilers) or native-to-native 
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dynamic optimization systems are confounded by interpreters.  This is because the 
“hotspots” that are identified and optimized are the loops in the interpreter, rather than in 
the application being interpreted.  If the interpreter can supply to the dynamic 
optimization system some notion of a “logical PC (logical Program Counter)”, then the 
optimization system should be able to do a better job of identifying actual hot traces in 
the running system. 

As of the end of the Express contract, no publishable progress was made in this direction, 
but promising research continues in this area.  

 
 
6 Applying Functional Techniques to Systems Programming 
 
A major thrust of the Express project was exploring the use of functional programming 
languages, such as Scheme or SML, for systems programming. This was a necessary 
effort in service of the application of DDA to embedded systems and systems 
programming in general. This work began with our work on scsh, a Unix systems-
programming environment embedded within the Scheme programming language [Shi94]. 
Scsh remains the most complete Unix systems-programming environment developed to 
date in a functional language, and has been downloaded off the net and used for a wide 
variety of tasks: financial analysis, VLSI design, web servers, web clients, distributed 
systems development, database interfaces, and systems administration. We have 
continued to develop and extend scsh over the lifetime of the Express project, most 
recently releasing version 0.6.3 in January of 2003, found at http://www.scsh.net. 

Besides serving as a platform for systems programming in Scheme, scsh also provided an 
opportunity to explore the use of embedded-language development for task-specific 
notations in systems program. The Scheme macro system allowed us to develop multiple 
such notations, for tasks such as process creation, pattern matching, and string 
processing. This leads to a particular paradigm for “domain-specific languages” that 
allows tight integration of multiple, distinct task-specific notations, all connected together 
by the powerful “glue” of the Scheme programming language. [Shi96b]. 

 
Programming languages and operating systems are artifacts with something in common: 
they are both specifications of a virtual machine. It could be said that Unix and C are 
symbiotic with respect to this commonality, in that Unix provides the fundamental run-
time services needed by the C ``machine'' model. This leads to a pair of related questions: 
 

• How best to express these standard OS services in a manner that is most 
harmonious with the machine model presented by a functional language? 
 
The development of scsh allowed us to address this issue, with consequent gains 
in simplicity and expressiveness over the interfaces exported from the C model.  
As one example, we were able to provide “GC-like” automatic management for 
operating-system resources such as processes, asynchronous signals, and I/O 
handles [Shi97b].  Just as with automatic management of memory, allowing the 
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automatic management of these resources in scsh provides gains in clarity, 
simplicity, modularity, and robustness of systems programs---completely 
eliminating errors such as creating zombie processes, or creating deadlocks by 
failing to release process I/O resources.  Thus, functional languages serve the 
needs of systems programming. 

 
• What are the fundamental OS services that are symbiotic with the needs of 

advanced functional languages? 
 
Our answers here proceeded from our years of work on scsh within the standard 
OS paradigm. To try them out, we constructed ML/OS, an implementation of 
Standard ML that ran on bare hardware---the language, in this case, was the OS. 
The resource-management, asynchronous exception, scheduling, and protection 
mechanisms are all those of the functional language. This was accomplished via 
the DARPA-funded OS Kit, developed by our colleagues at the University of 
Utah [FBB+97]. 
 
One of the deeper connections between functional languages and operating 
systems lies in the realm of modelling processes and process state using 
continuations in Scheme.  This opens up the possibility of exposing the patterns of 
thread interaction to language-level optimization [Shi97a]. 
 
A final result of our work in ML/OS stemmed from the realization that the 
standard techniques for implementing storage allocation in a garbage-collected 
system interact very badly with thread schedulers.  When an operating system’s 
core scheduler is just some functional language’s thread system, this is a serious 
issue … but it also surfaces in highly-threaded, high performance transaction 
systems built in languages like Java (something that has become quite common 
since we did this work).  We designed a novel storage-allocation technique to 
address this issue in ML/OS, which provides both extremely low-latency context-
switch times and extremely low overhead allocation costs [SCM99]. 

 
Continuing the theme of efficiently coupling the requirements of dynamic programming 
languages with the underlying resources of the target machine, we developed techniques 
to support the special needs of dynamic languages on the Java VM [Shi96a]. 

The common thread of this work is the notion of putting the powerful tool of advanced 
functional programming languages to work in a systems context. Only by “stressing” 
these languages in serious use can we discover their benefits, and, more importantly, their 
shortfalls, in order to gain understanding for further design. 

 
 
6.1 Transducer Composition 
 
We discovered a continuation-based technique for connecting computational elements 
represented as on-line transducers. This technique exposes the control- and data-flow of 
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composed transducers to analysis and optimization using standard control-flow analysis 
approaches. The potential here is to “fuse” or optimize across compositions of elements 
such as network-protocol layers, DSP modules, iterators, or processing steps in high-
performance graphics rendering algorithms. 

The basic technique hinges on a CPS (Continuation Passing Style) program 
representation, fitting in with the general thrust in Express of applying the technology of 
advanced programming languages to real systems applications. 

Over 1998, we generalized this technique to transducer networks that do not have a 
simple linear “pipeline” data-flow topology. We also implemented the analyses and 
optimizations in the SML/NJ compiler, developed by our collaborators at Bell Labs.  This 
research is documented in a 1999 technical report, [Shi99]. 

 
7 ``Proof engineering'' and the Athena proof language 
 
Proof engineering and the Athena proof language improve and extend the static analysis 
capabilities of the DDA. 
 
7.1 Background 
 
In the very early stages of the project, we constructed a Scheme interpreter that allows the 
programmer to annotate arbitrary expressions with assertions drawn from a logic defined 
in a first-order, Horn-clause (Prolog-like) system. These assertions are checked before 
executing the program. We have successfully implemented some simple “task-directed 
logics” using this prototype tool, such as dimensional analysis. 

We experimented with HOL, a significantly more powerful theorem-proving system.  
Proof-checking in HOL can be carried out very efficiently, being essentially equivalent to 
type-checking. The richer logics supported by HOL should also allow us to represent 
more sophisticated analyses and annotations. 

After spending some time with the proof systems such as HOL and LF, we launched into 
an ambitious project to develop a proof-based language that is formally well grounded 
but as natural to use as modern programming languages. 

 
7.2 Athena-0 
 
In 1998, we completed the design, supporting theory, and initial implementation of 
Athena, a new proof language. Athena is a novel departure from standard proof 
languages, especially those based upon the “types are theorems” Curry-Howard 
isomorphism, such as LF. In Athena, a proof is a program; evaluating this program 
produces a theorem (or an error, if the program makes an invalid step). The semantics of 
the language make it impossible to produce a false “theorem.” 

The design of Athena has been driven by a dissatisfaction with the current notations for 
expressing theorems and proofs. While notations such as LF are quite general, they are 
not well-suited for use by humans---they are the logical analog of programming in 
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assembly language. The Athena language exploits well-understood principles of language 
design, such as scope, abstraction, and higher-order values, to produce a compact, 
expressive notation for proving theorems. 

The initial system, Athena-0, was an initial exploration of the basic proof techniques 
embedded in a dual computation/deduction linguistic setting. It provided support for 
proofs of arbitrary theorems in propositional logic. The language has a complete, formal 
specification, using operational semantics. There are several theorems establishing 
fundamental properties of the language, such as its soundness: if an Athena proof 
establishes a proposition, that proposition is guaranteed to be valid, i.e., it is a theorem. 

 
7.3 Athena-1 
 
In 1999 we developed the second version of Athena.  Athena-1 extended the basic 
notation to predicate logic. Both of these designs have been performed with solid 
theoretical underpinnings: a complete formal semantics for the languages, along with 
associated proofs of correctness. Work has begun to produce printed tutorials and 
reference manuals to enable external users to use Athena. A recent, DARPA-funded 
research project has used Athena to construct a compiler that produces machine code 
along with a verifiable proof that the machine code is a faithful and correct translation of 
the program source. 

 
7.4 Denotational Proof Languages 
 
Several new Deductive Procedural Languages (DPLs) have been designed and 
implemented. These include type-ω DPLs [Ark01d] for classical logic and for various 
modal and temporal logics.  New theorem-proving paradigms based on higher-order 
proof continuations have been discovered in DPL formulations of modal logics in 
connection with the necessitation rule.  These paradigms enable one to write powerful 
theorem provers for so-called “normal” modal logics (such as T, S4 and S5, etc.)  in a 
fluid and succinct style, and with a strong soundness guarantee. 

DPLs introduce novel semantic abstractions and versatile mechanisms for constructing 
certificates that are not available in previous frameworks, such as logic-programming 
languages or theorem provers of the LCF/HOL variety. Athena, in particular, has already 
been used to express several sophisticated algorithms (such as the Hindley-Milner type-
inference algorithm) as certificate-producing theorem provers. If this can scale to real-life 
programming, it will open up a whole new way of writing software. 

 
7.5 Applications of DPL's to Concurrent Systems 
 
In 2001, we focused on the specification and verification of complex concurrent systems. 
In particular, we have been exploring the construction of DPL theorem provers for 
several of the various temporal logics that have been found useful for specifying and 
reasoning about the behavior of concurrent systems, both linear and branching.  We have 
worked on the logic used by Manna and Pnueli, Lamport’s temporal logic of actions, and 
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computation tree logic.  We are also exploring the incorporation of a DPL-based theorem 
prover for first-order logic into IOA, a language for specifying concurrent systems using 
Lynch’s formalism of input-output automata.  Finally, we have been investigating the 
integration of model-checking techniques for finite case-analysis reasoning into type-ω 
DPL’s. 

 
7.6 Certified Computation 
 
One of the most exciting new applications of sophisticated Denotational Proof Languages 
(DPLs) is what we have dubbed certified computation.  A certified computation not only 
produces a result r but also a correctness certificate, which is a formal proof that r is 
correct. This can greatly enhance the credibility of the result: if we trust the axioms and 
inference rules that are used in the certificate, then we can be assured that r is correct. In 
effect, we obtain a trust reduction: we no longer have to trust the entire computation; we 
only have to trust the certificate. Typically, the reasoning used in the certificate is much 
simpler and easier to trust than the entire computation. 

Certified computation has two main applications: as a software engineering discipline, it 
can be used to increase the reliability of our code; and as a framework for cooperative 
computation, it can be used whenever a code consumer executes an algorithm obtained 
from an untrusted agent and needs to be convinced that the generated results are correct.  

We have been exploring the theme of certified computation in an attempt to build 
dataflow analyzers and smart compilers that prove their results. This could lead to a 
completely open, general, and extensible compiler architecture. For instance, an arbitrary 
source could contribute a new optimizing module, which we could trust and confidently 
use because it would justify its results.  The basic idea is simple: programmers often 
know a lot of things about the behavior of their code. If the compiler knew these things 
too, it would often be able to improve the quality of the generated code by leaps and 
bounds. Some current smart compilers discover some of this knowledge on their own, but 
the task is usually hopeless. In fact it is provably impossible for the compiler to extract all 
the potentially useful information on its own---the problem is undecidable. Our proposal 
is to turn to the programmers.  They already know all the answers, and usually they can 
back them up as well. Thus the idea is for the programmers to give information to the 
compiler. They tell the compiler: “Such and such is always true at this point in the 
program. If you don’t believe me, here is a proof.” The compiler will then check the 
proof, and if the proof goes through it can then go ahead and try to do some good things 
with the code based on the supplied information that the programmer provided. This idea 
is originally due to Knuth, and dates back to the early 1970s. It is lamentable that it was 
never fully pursued.  We believe that DPLs have raised the state of the art in proof 
technology sufficiently high for this ambitious project to finally have realistic chances of 
success. 

For a more detailed exposition of the application of DPL technology to certified 
computation, see [Ark01a]. 
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7.7 Efficient Implementation of DPL's 
 
We have also worked on efficient implementations of DPL’s.  A graduate student in our 
group has defined and implemented a virtual machine for the monomorphic subset of 
Athena that extends the SECD abstract machine [Lan64] with various new constructs 
designed specifically for DPL features such as assumption bases.  Preliminary results are 
encouraging, even without compiling the VM code into native machine code.  Moreover, 
we expect that most of the ideas developed for Athena should carry over to other type-ω 
DPL’s, allowing for efficient implementations of theorem provers for various different 
logics. 

To ensure logical soundness, Athena performs full Hindley-Milner inference dynamically 
rather than statically, and a naive implementation will be excessively penalized.  A new 
implementation technique was discovered that achieves optimal performance by 
postponing work until all redundant computations can be detected and avoided.  Also, 
Athena was extended with a novel technique, based on DPL ideas such as assumption 
bases, for performing structural induction over arbitrary free algebras.  Structural 
induction is a key tool in the study of programming languages, and this development will 
enable Athena to be used for proving important properties of programming languages. 

 
8 DOLL subcontract 
 
This subproject serves as the main application area for our DDA efforts.  A reflective 
architecture has been implemented that works by synthesizing code from a specification 
using modules that include local self tests. The generated code is linked to the 
specification that generated it and the program synthesis engine is available at runtime. 
When the base program runs it must execute the pre- and post-tests before invoking the 
individual modules of the program. As long as the tests succeed the program continues 
but when a test fails it invokes the next level up the reflective tower where the failure is 
understood in terms of the specification and the failing module. At that point the 
applicability of the module is understood to be inappropriate and the synthesis engine can 
resynthesize taking into account what is now known about the state of the world. This can 
happen at multiple levels because the task of synthesizing a program from a specification 
is implemented with a meta program that implements a meta specification. If the 
synthesizer is unable to synthesize a suitable program, an exception is raised at the next 
higher level, and so on for as many levels as makes sense for the problem at hand 
(typically a small number). 
The initial version of this architecture was agent-based. The synthesis of code from 
specifications involves connecting together parts of the solution in the form of modules 
with entry and exit tests. Instead of having the code generated as a problem-solving 
activity the solution can be template driven. Templates of successful solution prototypes 
can be hand generated based on experience. The templates have requirements for how the 
entries are to be filled and the entries can then be chosen with self tests as before in order 
to populate the template. When a template cannot be successfully filled a different 
template must be chosen. The task of populating a template with modules whose 
signatures match the templates requirements is very similar to method combination. 
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Instead of methods being chosen purely on the basis of a matching signature, there is a 
procedure for evaluating the utility of a proposed method. The method combination then 
evaluates the collection of methods that yield the greatest global utility for the template 
(we want the template as a whole to operate well). 

The templates described above are essentially “super routines”. The protocol for template 
selection and instantiation involves a protocol for introducing the utility assessment as 
well as the executing the method pre and post tests. In this model, method recombination 
occurs when a pre or post test fails. The equivalent to condition handlers in this model is 
code that is executed to update the utility model, which will then be employed for the 
recombination phase. 

While the template populating approach is, in a sense, less general than the code 
synthesis approach implemented before, it has a number of attractive features. 

 
1. It allows more explicit control over the behavior of the program because the 

templates are programmed by hand. This makes it easier to be confident that the 
behavior of the system will follow a well-understood path. 

 
2. It is cast in the form of a programming model in which program code, self tests, 

and a utility model each can be represented clearly in the form of program code 
and debugged in a traditional way. 

 
 
We documented the protocol for template instantiation, recasting the initial agent-based 
implementation. The resulting document will be used as the basis for the new 
implementation of the code in a form that can be distributed so that other groups can 
experiment with building self-adaptive code. 

 

8.1 The GRAVA Architecture 
 
The work performed for this subcontract was based on a self-adaptive architecture for 
aerial surveillance (Rob99a,b). GRAVA (for Grounded Reflective Adaptive Vision 
Architecture) is a self adaptive architecture that segments and labels aerial images in a 
way that attempts to mimic the competence of a human expert.  
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Figure 5: Logical Components 

  
Figure 5 shows the logical components of the system along with the supporting 
relationships between the parts. We now sketch the roles of these components.  
  
To produce an image interpretation, a variety of tools need to be brought into play.  First, 
the image is processed by various tools in order to extract texture or feature information.  
The selection of the right tools determines ultimately how good the resulting  
interpretation will be.  Next, a segmentation algorithm is employed in order to produce 
regions with outlines whose contents are homogeneous with respect to content as 
determined by the chosen texture and feature tools. The segmentation algorithm also 
depends upon tools that select seed points that initialize the segmentation.  The choice of 
tools to initiate the segmentation determines what kind of segmentation will be produced.    
 
Labeling the regions depends upon two processes.  The first tries to determine possible 
designations for the regions by analyzing the pixels within the regions.  The second is a 
statistical parser that attempts to parse the image using a 2D grammar.  Our application 
currently doesn’t make use of the parse; but it could be used as the basis for further image 
interpretation.  An important side effect for our application is that contextual information 
mobilized by the parse process enables good labels to be chosen for regions when there 
may be several ambiguous possibilities if one only looks at the pixels within the region.  
  
At any point, a bad choice of tool---for initial feature extraction, seed point identification, 
region identification, or for contextual constraints --- can lead to a poor image 
interpretation.  The earlier the error occurs, the worse the resulting interpretation is likely 
to be.    
 
The problem of interpreting the real world is inherently ambiguous. A speech or vision 
program must select the most likely interpretation from the ambiguous candidates. 
Selecting the most likely interpretation is equivalent to selecting the interpretation with 
the minimum description length (MDL). We developed apparently for the first time an 
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agent architecture based on the MDL principle, and supporting a conjecture of Leclerc 
(Lec89) that MDL can apply to higher-level semantics.    
 

 
  

Figure 6: Segmented Image  
 
 

8.1.1 GRAVA’s Self Adaptive Architecture  
 
The goal of the architecture is to support self-adaptation. When the self-assessment 
determines that the program is doing poorly, the program should seek some way of 
adjusting its structure so as to do better.  The self-adaptive architecture is a collection of 
supporting capabilities that permits this simple approach to self-adaptation to work.  The 
supporting components are as follows:  
  
1.  Self-assessment---the ability of a computational agent to evaluate how well it is doing 
at its current task. The GRAVA architecture provides a protocol for supplying self-
assessment functions.  
  
2.  Structure building---the mechanism that constructs a program from a collection of 
computational agents.  This structure building apparatus is invoked whenever self-
assessment indicates poor performance; the system tries to improve by re-synthesizing its 
program code, using the statistical theorem prover.  
  
3.  Reflection---the support for self-understanding within the system.  By inspecting  
the state of the embedded semantic account, the system can reason about what the system 
is doing in terms of a goal that its actions are intended to achieve.  
 
8.2 Debugging and Documenting the GRAVA Architecture 
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We focused our efforts on debugging and documenting the GRAVA architecture. The 
documentation will serve as working documentation for the ongoing use of the GRAVA 
architecture and will be the basis for conference and journal papers. We have debugged 
and documented the following areas. 
 

8.2.1 Development support 
 
The GRAVA architecture monitors its relationship with the world by running certain tests 
(pre-tests and post-tests).  When they fail an adaptation event occurs which tries to adapt 
the program to fit the environment better.  Pre-tests and post-tests are associated with 
interpreters.  An error system provides support for monitoring when a pre-test or post-test 
fails. 

When an adaptation event occurs a shift in meta-level occurs in the reflective interpreter.  
We provide the ability to set breakpoints on meta-level transitions so that self-adaptation 
events can be monitored.  Finally, the individual agents can be monitored by break points 
so that agents can be debugged.  We also provide a mechanism for setting breakpoints on 
the top level return of a solution, so that the selected solution can be interrogated. 

In each of the above, the breakpoints can be set for all reflective levels, a specific 
reflective level, or for a list of reflective levels. 

The breakpoints can be set to execute a piece of code rather than “break” so that the 
software tracing and monitoring of performance can be achieved. 

 

8.2.2 Reflection 
 
The generalized and expanded implementation of GRAVA and the approach to multi-
sensor tracking makes use of GRAVA’s reflective self-adaptive architecture. 
 

8.2.3 Scarce resources management 
 
Resource management works by: 
 

1. Producing a representation of the resource budget, 
 

2. Producing a representation of the cost of running an agent, 
 

3. Estimating the extent to which agents overlap in their coverage of the 
interpretation space, and 

 
4. Distributing the resource budget over the entire program. 
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9 Conclusion 
 
We have been mostly successful in achieving our goals and responding to our challenges.  
At least with respect to making advanced, functional programming languages useful, 
practical tools for both serious systems programming and embedded software 
development, we believe that we have largely been successful.  With respect to the goal 
of “closing the feedback loop” on software construction, we have at least made a credible 
start.  This goal is one that will involve decades of research by many talented research 
groups before the goal is actually reached, but many improvements have been made, and 
will be made in the near future. 
 
Throughout the final report we have indicated areas that require further work.  We 
enumerate a subset of those here: 
 

1. Improving the DDA services related to diagnosis, repair, rollback and resourcing. 
 

2. Implementing a translation from the Java programming language to the DVM.   

3. Adding features to Java that tap some of the more dynamic aspects of the 
underlying DVM. 

4. Dynamic Optimization Technology 

 
5. Application of DPLs to actual software systems. 
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